
Numerical demonstration of the semiclassical matrix element probability distribution between

integrability and chaos

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L569

(http://iopscience.iop.org/0305-4470/27/16/002)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 27 (1994) L569-L577. Rinted in the UK 

. LETTER TO THE EDITOR 

Numerical demonstration of the semiclassical matrix 
element probability distribution between integrability and 
chaos 

To& hosen 
Center for Applied Mathematics and Thenretical Physics, Univemity of Maribor, Krekova 2, 
SLO-62000 Maribor, Slovenia 

ReQived 3 May 1994 

Abstract. In this.letter I report on the first successful verification of the semiclassical matrix 
element probability distribution for the Hamiltonian systems b e e n  integrability and chaos. 
As for all the other statistical pperlics of quanNm dynamical systems (e.g. level spacing 
dishibution. phase space localization of eigenstates etc) the semiclassical limit was found to 
converge extremely slowly. So a rather a b s m  dynamical system was used, namely the standard 
map on a toms, in order to clearly demonstrate the semiclassical regime. 

The rapidly developing field of quantum chaos has so far answered many questions. 
concerning statistical properties of quantum systems whose classical counterparts are chaotic 
(see, for example, Giannoni et a1 1991, Gutzwiller 1990 or Eckhardt 1988). But less 
is known about the statistical properties of matrix elements of typical okrators in the 
eigenbasis of a chaotic Hamiltonian (see, for example, Feingold and Peres 1986, Feingold 
et al 1989, Austin and Wilkinson 1993, Prosen and Robnik 19934 and hosen 1994- 
hereafter p94) and even less if the underlying Hamiltonian is between integrability and 
chaos (Alhassid and Feingold 1989, Prosen and Robnik 1993b. ~4). There are two sets of 
universality classes of quantum fluctuations (of any physical quantity) which correspond to 
two extreme characters of classical motion, namely, integrable-regular, and ergodic-fully 
chaotic. For the latter-classically ergodic-case it was found that the quantum fluctuations 
can be modelled by the statistical ensembles of random matrices GOE/GUP/GSE (of random 
matrix theory RMT (see, for example, Mehta 1991))--conjecture of Bohigas e t d  1984. The 
most frequently used Gaussian orthogonal ensemble (GOE) refers to the case where there 
is a time reversal symmetry (e.g. no magnetic field) or some other anti-unitary symmetry 
(Robnik and Berry 1986, Robnik 1986), and no spins are involved. 

In a recent paper p94 I have verified the validity of RMT for describing the statistical 
properties of matrix elements of typical observables in an eigenbasis of chaotic Hamiltonian 
by means of (i) matrix element probability distribution (MEPD) 'DOJ,(A), where 'Dg(A) dA 
is a probability that a randody chosen matrix element Aat = (EklAIEr), with energies 
Ek, E, close to E and the transition frequency yl = ( E k  - & ) / E  close to mt lies in 
the interval [A - dA/2, A + dA/2], and (ii) more general multi-operator cross matrix 

t For time-dependent, periodically driven systems the wansition frequency is just the difference of the eigenphases 
of the Fkquet propagator, 0 x 1  = & - 41, and the other argument E (energy) makes no sense and is omilted. 
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element probability distribution (CMEPD) %(A, E,. . .), where Dg(A, E.. .)dA dB . . . is a 
probability that randomly chosen n-tuple of matrix elements Ax[, Bk. . . . lie in the intervals 
[A - dA/2, A + dA/21, [E - dB/2, B + dB/Z].. .. The notation in this letter follows 
exactly that of W4. In the classically ergodic case (with time reversal symmetry) typical 
operators are supposed to be represented by GOE matrices whose elements are Gaussian 
random variables with zero mean, so 

where M is the so-called covariance matrix Mij = (AiAj) = JdAl.. .dA. AiAjDgoE(Al 
. . .An), since typical observables &, i = 1.. .n need not be uncorrelated. For the other 
extreme of classically integrable systems we have 

Drts~ar(A)=S(A) DregudAl . . .AJ=S(AI)...S(AJ (3) 
in the semiclassical limit f i  + 0,~as a consequence of selection rules which set most of 
the matrix elements to zero (F'rosen and Robnik 1993~). Note that the convergence to 
the semiclassical limit (3) is not uniform but only point-wise, since non-semiclassical MEPD 
Dmplz(A) has typically slowly decaying tails, so higher moments (A"), m 2 2 may remain 
different from zero or even become infinite in the semiclassical limit. 

For the generic system between integrability and chaos we use the principle ofuniform 
semiclarsical condensation of eigenstatt-s onto the classical invm'ant ergodic components in 
phose space which can be either integrable (invariant ton) or chaotic (Robnik 1994). Then 
we also use the fact that the matrix, element of any smooth observable between two states 
whose phase space (WignerMusimi) distribution functions have disjoint supports vanishes 
in the semiclassical limit (see appendix D of p94). Let us assume for simplicity that we 
have only one chaotic componentt with relative phase space volume pz and all integrable 
components merged into a reg& region with relative volume p1 = 1 - pz. The only 
non-zero matrix elements in the semiclassical limit are between two chaotic states (having 
the same support) with relative measure p;, so using RMT 

(4) 

(5) 
The variance a'@) and the covariance mahiw M ( o )  can also be determined solely by 
the classical dynamics, i.e. as classical averages ( )c over the chaotic component C of the 
smoothed classical power spectra (see ~ 9 4 )  

Z i d A )  = (1 -&J(A) + P@$&), 

D&d(Ai.. .An) = (1 - p.$(Ai). . .S(A,) + p@t$)(A~. . . A,). 

'This is usually a very good approximation s ina  the next largest chaotic component is typically orders of 
magnihxle smaller provided we are deep in the msition region far away from the pseudo-integrable (KAM) 
regime. 
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Signals uj ( f )  are the time evolutions of classical counterparts of 4, d is the density of 
states, and the smoothing time 7 should be as large as possible but not larger than the 
so-called break time f- = 21rfid. 

Let us now define our dynamical system. Its phase space is a compact two-dimensional 
torus TZ = ( ( x ,  y); x ,  y E [-n, n)], where the periodic'coordinates x and y will be referred 
to as position and momentum, respectively. The dynamics is given by consecutive applica- 
tions of 'free motions' Ufm(x, y) = (x  + y. y )  and 'kicks' &k(X, y )  = ( x ,  y - U  sin(x)). 
The most useful is the symmebic representation of the evolution mapping U, 

which clearly exhibits the two symmetries of the compact version of the (Chirikov) standard 
map (8); namely the time reversal symmetry T ( x ,  y) = ( x ,  -y), T o U o T = U-l and 

Since the classical phase space is compact, the quantum Hilbert space is finite- 
dimensional and its dimension n determines the dimensionless value of the effective 
Planck's constant hefi = 21r/n. Let n be an even number n = 2m. The position and 
momentum eigenstates denoted by Ixk) and In) can be defined through the relation (xklyr) = 
n-'/2exp((in/2n)xkyr), where our choice xk = (21r/n)(k - 4), yf = (2n/n)(Z - l), k, 1 = 
1 . . . n, warrants the single-valuedness on the torus Tz. The-quantization procedure is now 
almost obv ioz  the quantumJnitary evolution propagator U is decomposed to products of 
free motions U& and kicks U L + ~ ~  in precisely the same way as the classical one (8) where 
quantum analogues for the kick and the free motion q e  diagonal in position and momentum 
representation, respectively: 

parity P (x ,  y) = ( -x ,  -y), P 0 U 0 P = U .  

The phases of the diagonal elements in (9) are the classical generating functions, which 
generate the classical mapping (8), divided by 21r/n. Therefore as n + co the quantum 
evolution approaches the classical dynamics. There exists a simple closed form expression 
for the propagator in position representation 

which is the discrete time analogue- of the well known infinitesimal propagator 
exp[(i/fi)((x - x')'/2mdf - (V(x) + V(x'))dt/2)] for the general continuous Hamiltonian 
case. Using the symmetry under parity P one can further reduce ndimensional_unitary 
matrix Ukf = (xalUlxk,) to two (m '= n/2);dimensional unitary matrices U& = (xaulUlxpc) 
where [xku) are parity preserving position eigenstates Ixku) = 2-'12(Ixk) + ul - x k ) ) .  k = 
1 . . . m and U = rtl is a parity eigenvalue. Quantization can also be worked out for odd 
values of n but it is physically less transparent so I have used only even values~ of n in my 
numerical example. 

I have diagonalized symmetric (due to time reversal) and unitary matrices U; as 
far in the semiclassical h i t  m + w as possible giving the eigenphases $7 and the 
oahogonal set of eigenvectors 14;) having real components in position .representation 
(xjul$z) = (&'lxju). I have chosen the two simplest operators which are diagonal 
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in position representation and are periodic functions of x ,  namely Â  = c o s 0  and 
= cos(%. The matrix elements were calculated by means of the simple formulae 

I have investigged the-statistics of matrix elements for the quantum standard map (10) 
and operators A and B as high in the semiclassical limit m + 03 as possible. The 
compactified standard map is integrable for a = 0 and almost completely chaotic for 
a > 7. Since we are interested in the mixed regime, I will present the results for a = 1.8 
where approximately three quarters of phase space is covered by a single connected chaotic 
component, pi = 0.265 (1 f 0.8%). As in the analogous semiclassical study of the level 
spacing statistics (Prosen and Robnik 1994a, b) I have found that in the non-semiclassical 
regime there exists a quasi-universal family of phenomenological MEPDs ’D,(A) where a 
delta-like spike is being formed at small A but has a long and accurate exponential tail at 
moderate and large A 

%(A) cx exp(--cYIAl) if o l A l >  1 .  (13) 
Best fitting exponential distribution (13) agrees excellently with numerics for sufficiently 
small m (see figure 1). This was also found (f94) in a completely different system, namely 
the Robnik’s billiard, so it has analogous status as the family of Brody distributions for 
modelling the level spacing statistics (Prosen and Robnik 1993% 1994a, b)t. 

By increasing m one observes slow and continuous transition from linea-logarithmic 
behaviour l o g P ( A )  = 0 (A) to quadratic-logarithmic behaviour logz)o(A) = 0 (A’), 
the latter being typical of the Gaussian part in (4) and (5), and only at m 8000 the 
fit to the true semiclassical formulae (4) and (5) becomes significant (see figure 2). The 
average (with respect to o) best fitting value of the parameter p i  = 0.272 is by 2.6% larger 
than the classical value and is exactly the same as obtained from the analogous study of 
the level spacing distribution (Prosen and Robnik 1994a). In figure 3 I demonstrate the 
predicting power of the generalized Feingold-Peres formula (Prosen and Robnik 1993b, 
f94; see also Feingold and Peres 1986, Alhassid and Feingold 1989) for the classical 
estimate of the average square of magnitude of matrix elements (and of the correlation 
coefficients between matrix elements of different observables (~94 ) )  as a function of the 
transition frequency (equations (6) and (7) with pz = 1 and C = the whole phase space, 
or energy surface for autonomous systems). I have applied the semiclassical formulae (4) 
and (5) and determined the best-fitting parameters p1 = 1 - pz, a, M as functions of the 
frequency o and compared them with the corresponding classical values: P I ( @ )  with the 
classical fractional volume of the regular component and a(@), M ( o )  with the formulae 
(6) and (7). In both cases excellent agreement was found. I have also compared the 
relative moments pm(o) = (~g’)O/((2m - I)!!((A~J’)~) with their semiclassical values 

.cl A) = l / p X m - l )  (derived using (4)), provided that regular-regular MEPD Dmmim(A) 
PLm ( 
decays sufficiently fast as A + 03. This need not be the case, especially in the regions 

t Qualitatively similar distributions (sharp peak at small amplitudes and uponential tail at large amplitudes) were 
also obtained in the context of nuclear shell-model theory in (Whitehead et al1978) and pssibly in Verbaarscha 
and B~ssaard (1979) although the m n s  for the deviation f” Po*-Thoi?m Gaussian are different in these 
two cases (selection NI= and dependence upon mean energy of the basi i tes) than in our case ( m i d  classical 
dynamics) so these distributions are not quantitatively applicable to our case. 
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Figure 3. The logarithm of the average square of magnimde of d x  elements of opcralors 
(a), (c) cos? and (6). (d )  c m E  at the kick p3IJmetcr a = 1.8 in the far semiclassical limit 
m = 7991. ..7995. There arc WO yu of curves: the lower one refers lo the quantal man 
square ( (a) ,  (6)  thin CUNCS) comparcd with the e l m i d  p d i d o n  according to the formula (6) 
with m = I and C k ing  the cntk phase space (shown in thin grey background curves). The 
upper sei refers to the m a n  square of the Cluotic-chmtic "ix elements ((0). (6)  lhick curves), 
which is obuincd as panmeter oz(w) by the best fit to the formula (4). compared 10 the c lass id  
prediction (6) with m = 0.73 and C being the chaotic component in the phase space (shosvn in 
thick grey bvkground curves). The other best fining parmetcr PI(")  is gven in (c). ( d )  as 
the function of m i t i o n  hqucncy The comlalioo coefficient ( A ~ B I I )  Jm is shown 
in (d). All qwntum quantities in (uHe) a g m  wrth the corresponding classical expressions 
(given by (6.7) with smoothing time r = 1000, where b d  = m zs SOW) which shown as 
background grey curvn. Note that the spikes of the grey CUNeS ye just the elassncal resonances. 
The quantum I)I(O) SlighUy fluctuakx mund  lhc "due 0.272 which devixes only by 2.6% f" 
the classicill value pY1 = 0.265. 
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Figure 4. The logarithms of the relative moments p,,,(o) = ( A ? ) " / ( ( k  - l)!!((Ai,)')m) 
(m = 2.3.4 for thick, medium and thin curve, respectively) of the oprators (a) cos? and (b) 
cos~andatthelrickparametera=1.8inthefarsemiclassicallimitm=7991 ... 7995. The 
relative moments match with the corresponding semiclassical values. denoted by dolted lines, 
in the regions when there are no classical resonances (compare with figure 3). 

where classical resonances are clustered (see figure 3) resulting in ordered series of strong 
quantum aansitions. Indeed, in figure 4 we observe the agreement between the relative 
moments pL,(o) and their semiclassical values in the o-intervals where classical resonances 
are almost absent but in resonant regions pm(o) typically increase by orders of magnitude. 

In this letter I have demonstrated the validity of the semiclassical formula for the 
(cross-)matrix element probability distribution (4), (5) in a one-dimensional compact 
quantum standard map, since sufficient depth into the semiclassical regime can, so far, only 
be reached in kicked onedimensional systems. Thii also agrees with the results of analogous 
studies of the level spacing distrihution (Prosen and Robnik 1994% b), and the phase space 
localization of eigenstates (Prosen and Robnik 1994c), where it has been demonstrated 
directly how the principle of uniform semiclassical condensation (Berry-Robnik approach) 
of eigenstates onto the classical invariant ergodic components correlates with the validity of 
the various semiclassical formulae: for the energy level statistics (Berry and Robnik 1984), 
for the delta statistics (Seligman and Verbaarschot 1985) and for the (C)C)MEPD (p94). 

I am grateful to Professor Marko Robnik for stimulating discussions, for enabling 
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